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Frequency-Swept Microwave Imaging of
Dielectric Objects

TAH-HSIUNG CHU, MEMBER, IEEE AND NABIL H. FARHAT, FELLOW, IEEE

Abstract —In  this paper, analytical and experimental studies of
frequency-swept microwave imaging of a nondispersive dielectric object
satisfying the Born approximation are presented. The retrieved images
shown from experimental data measured in the frequency range 6-17 GHz
are free of the speckle noise that plagues conventional coherent imaging
system. The results demonstrate that the microwave imaging system de-
scribed here has potential as a cost-effective tool in nondestructive evalua-
tion of dielectric objects.

I. INTRODUCTION

HE ABILITY OF microwaves to propagate through

optically opaque dielectrics makes microwave ho-
lography useful for remote sensing and nondestructive
evaluation (NDE) of dielectric structures. This is accom-
plished by recording and analyzing the wave field scattered
by coherently illuminated dielectric structures. The use of
frequency diversity has been demonstrated to be an effec-
tive means for accessing the 3-D Fourier space of a scatter-
ing body and for the retrieval of tomographic or projective
images of the body [1]-[3] based on the projection-slice
theorem [4]. Automated and efficient data acquisition is
achieved by combining angular and spectral diversity.

In this paper, we make use of the fact that the normal-
ized scattered far field of a dielectric object, under the
first-order Born approximation, is related to the Fourier
transform of the derivative of the dielectric constant of the
test object [5]. Therefore, based upon the projection-slice
theorem, either direct Fourier inversion or a filtered-back-
projection algorithm can be applied to obtain a projective
or tomographic image of dielectric bodies from the accessed
spectral (or Fourier space) data. Experimental results of
projection imagery of two concentric plexiglass cylinders
viewed at different orientaiions demonstrate the utility of
the methods in imaging penetrable objects and visualizing
the internal structure in nondestructive evaluation.

II. THEORETICAL CONSIDERATIONS

In this section, we will present the principle of bistatic
microwave imaging of a nondispersive dielectric object
using the frequency diversity technique. The dielectric
object (see Fig. 1) possessing a relative dielectric constant
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¢, () and situated in a lossless, homogeneous medium,
here assumed to be air (¢, =1), is illuminated by a plane
wave ¥ (k, r) traveling in the direction of the unit vector
i x> where

Y (k,7)=e/k" (1)

k, = ki, being the wave vector of the incident wave, 7 and
r’ are position vectors, and exp(— jwt) is implied. The
total field ¥(k, 7) at the observation or field point O(F)
satisfies the scalar Helmholtz equation [5]

[v2+ k%, (7F)] ¥(k,F)=0 (2)

where Y(k,7)=VY,(k,7)+ ¥V (k,7), with ¥ (k,7) being
the scattered wave field, and

; €,(7)
€(7)=
A7) {1
Equation (2) can then be written as

[V2+ K2V, (k,7)=—k*[e,(F)—1] ¥ (k,F).

rev

Fre&Ee. ®)

(4)

Assuming that the dielectric object is weakly scattering,
ie, €, (F)=1+ Ae,(7) (and hence the first-order Born
approximation holds), (4) can then be expressed as

[V2+ k2], (k,7)=—Kk?Ae (F)¥,(k,F) (5)
where

and —k? Ae,(r) is known as the scattering potential 5] of
the dielectric body.

The solution of (5) for the scattered field for the case of
plane wave illumination and under the first-order Born
approximation can be shown, referring to Fig. 1, to be [5]

¥ (k,7)=— szG(F =) A, (F) T, (k,7') dv' (7)

where dv’ designates an element of volume of the object,
and

ejk|7v7| eij

" 4aR

(8)

is the Green’s function. The integration in (7) is taken over
all space, because Ae,(7) is zero outside the dielectric
object.
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Fig. 1. Frequency-swept microwave imaging geometry.
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Fig. 2. Geometry used in swept frequency microwave imaging experi-
ment,

A frequency-swept microwave imaging system can be
implemented as shown in Fig. 2, where the transmitter and
coherent receiver are located in the x—-y plane and the
dielectric object with scattering point (secondary source
point) position (p’,8’,z") is rotated in the § direction
about the z axis in order to be viewed at different azimuthal
aspect angles. The total scattered field is then

Y (k,7)=¥,(k,r,0)

st e

Since we have assumed the observation point is in the far
field, the distance R from the scatterer to the observation
point O(#) can be simplified as

R=[F—F|=r—i -F+r?/2r.

(10)

The last term in (10) can be neglected if the observation
point is in the far field, i.e.,

ar’? .
> =
g wavelength ()

Therefore, (9) becomes
Y (k,r,8)

— ke lkr ..
——— [[[f e (0.8 ) e Tyt g e
ar

_ k2ejkr o
= —47”——” Ae,(p', 07, 2') e Py’ dp’ df’ dz’.
(12)

Since 7' as seen from Fig. 2 is a function of p’, €', and z’,
the integral in (12) is recognized as the 3-D Fourier
transform of the dielectric constant difference, where

5=F—F =k(i—1)
= 2kcos(a/2)i; = pfp

= p[cos(ﬂ —a/2)i, +sin(8 - a/2)iAy]

is the position vector in the Fourier space I'(p), the
normalized scattered wave field, defined as

Y (k,r,0)
Vo (ki) (13

Here ¥ ,(k, r) = (jk /47nr) exp(jkr) is the scattered wave
field of a perfectly conducting cylinder which is used as a
reference object for range-phase term removal. The refer-
ence cylinder is positioned such that its axis is in the z
direction and its front surface coincides with the axis of
the turntable described in [2] and [3].

The quantity I'(p,8) is a two-dimensional slice in the
3-D Fourier space of the scattering dielectric object, which,
according to (12) and (13), is given by

I(p,0)= jkfffAe,(p’, 0',z")ye /P T dp' d@’ dz’

= jkfff[fAe,(p’,H’, z')dz' e 7P 7o' dp' db’
(14)

because the vector p is located in the x-y plane. The
Fourier inversion of (14) gives

/Ae,(p', 9', ") dz’

I(p)=T(p.0)=

= %ffjikl‘(p,ﬂ)efﬁ';pdpda
= Cff;,ll;r(p,0)eJPP’COS“’-f"—“/Z)pdpda
=cfff%r(p,a)ewi
-Slg—p’cos(ﬁ——ﬂ’—g)]dgpdpdﬁ
1
=Cf[f[ijfo(p)e”’gpdp}

-a[s—p'cos(a—af— 3)] d&}dﬂ

3 (15)
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where I'y( p) represents a p-space data line collected at a
given @ direction, C=cos(a/2)/27? is a constant de-
pending on the bistatic angle, and £ is the projected
distance of position vector 7’ to the p vector at the x—y
plane. Recalling the spatial differentiation property of
Fourier transformation, (15) can be rewritten as

%/Ae,(p',a',z') dz'=Cf[f[fro(p)e”€pdp]
'a[g— p'cos(0 y ;)] dg] d6. (16)

The left side in this equation represents the discontinu-
ity in the p direction of the dielectric constant profile
projected on the x— y plane. The absolute value of the left
side of (16) is defined as the dielectric image in this paper.
This is based on the observation that an image is formed
by reflection from interfaces or discontinuities. However,
(16) indicates that the projection on the x—y plane (z’
integral) of the dielectric constant profile can be recon-
structed from the accessed I'(p,#)/jp data, which is an
inverse scattering problem.

The inner integral in (16) is a one-dimensional Fourier
transform of a product of two terms, the first of which is a
line of I'(p,0) in a fixed # direction, and the second a
ramp filter or Ramachandran-Lakshmanarayanan filter
function [6]. This operation gives the projection data for
each view angle or the range profile of the object which is
the backscattered echo from the object when it is swept by
a propagative impulse plane wave. The second integral is a
back-protection operator for fixed angle 8. The outer
integral is a § summation of the back-projection data. This
expression in (16) describes a filtered-back-projection al-
gorithm [4] which is well known in CAT (computer-aided
tomography). Note, in practice, I';( p) is only available
over a certain spectral window [ p; to p,]. As a result, the
reconstructed image is diffraction limited and is then an
approximation of the true dielectric constant difference.
The Fourier space data I'(p,8) can also be interpolated
into a Cartesian format I'( p,, p,). Therefore a two-dimen-
sional direct Fourier inversion of T(p,, p,) would recon-
struct the same dielectric image based on the projection-
slice theorem.

Before proceeding to describe the experimental aspect of
this work, a few remarks are made here to emphasize the
distinction between the technique of X-ray tomography
and this frequency-swept microwave tomographic imaging
system. First, the data acquisition algorithm and the mea-
surement instruments are different. X-ray tomography is
an incoherent system which records the spatial-domain
projections of the X-ray absorptivity of the test object on
the viewing aperture. The described microwave imaging
system is a coherent system that accesses the Fourier space
of a scatterer by measuring the frequency response of the
body as a function of aspect angle. The spatial-domain
projections calculated from Fourier inversion give the de-
rivative of the projected dielectric constant profile of the
test object. A second distinction is that in X-ray tomogra-

491

phy the line integral (or projection) is taken along the
direction in which the X-ray radiation is beamed. In a
microwave imaging system employing plane wave il-
lumination, however, the integration is normal to the p-line
direction determined by the T /R positions. Therefore, the
reconstructed image is derived from range information
measured by each receiver, and the cross-range informa-
tion is then obtained by processing many range returns
observed in different scattering directions.

III. EXPERIMENTAL RESULTS

In the following experiment, results of imaging a dielec-
tric object consisting of two concentric plexiglass cylinders
with top and bottom plexiglass lids situated in an anechoic
chamber environment as shown in Fig. 3 are presented.
The radii of the inner and outer cylinders are 4.7 cm and
15.0 cm, respectively. The lengths of the cylinders are 24.0
cm and the plexiglass walls are 0.3 ¢cm thick. An HP8410B
automated network analyzer is augmented to make multi-
aspect scattered field measurements over a wide frequency
band covering the 6-17 GHz range as described elsewhere
[3]- The object is located about 8 m from the T /R anten-
nas to satisfy the far-field criterion given in (11). For
example if r'=15 cm and f=17 GHz, the right side of
(11) becomes 4 m, which is less than the object range. A
long metallic cylinder is used as the calibration object for
system response characterization and range-phase term
removal as described in [3].

A 2-D slice of the Fourier space data is formed by
rotating the test object in azimuthal 8 direction and mea-
suring [,(p) for each rotation angle 8. In the measure-
ment, two slices of the Fourier space data I'( p), shown in
Fig. 4(a) and (b), are recorded for two elevation angles of
the cylinders 0° and 90°, respectively. The data recording
format used consisted of 256 radial lines covering an
angular aperture of 360° with each line containing 64
frequency points. For the bistatic angle a=20° and the
frequency range 6-17 GHz used in the recording geome-
try, the vector p = k(f, - fk) =2k cos(a/2)fp extends from
p1=2475 rad/cm to p,=7.013 rad/cm. The resulting
range resolution is 8R=C/2Af=2w/(p,— p;) =1.38
cm, where Af is the spectral range utilized.

Projection images of the plexiglass cylinders can then be
reconstructed by applying either direct 2-D Fourier inver-
sion or the filtered-back-projection algorithm to the
accessed Fourier slice data. The 2-D inverse FFT of the
I'( p) data requires its conversion first from the polar
format in which it is originally acquired to a Cartesian
format. This was achieved by means of a weighted average
of the four nearest neighboring data points algorithm [7].
The interpolated Cartesian samples contain 128 X128 sam-
ples over the region p, = (—7.01~7.01) rad/cm and p, =
(—7.01~17.01) rad/cm, with the unavailable samples set
to zero. A’ 2-D inverse FFT is then employed and the
reconstructed images shown on the left side of Fig. 5 were
obtained. The reconstructed images obtained by the
filtered-back-projection operation are shown on the right
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Fig. 3. Measurement arrangement in an anechoic chamber environ-

ment.

Real part (a) Imaginary part

(b) Imaginary part

Real part

Fig. 4. Real part (left side) and imaginary part (right side) of accessed
Fourier space data T'(p) of test object oriented at elevation angles (a)
0° and (b) 90°.

side of Fig. 5. A nearest four neighbors interpolation
algorithm is used to transform the final back-projected
image from a polar format to a Cartesian format for
comparison.

The retrieved image for each elevation angle represents
~ the projection of the scattering centers, such as walls and
edges of the two cylinders, on the x—y plane. The results
shown in Fig. 5 bear close resemblance to the top view of
the two cylinders for the two elevation angles 0° and 90°.
Since the thickness of the plexiglass cylinder is less than
the range resolution of the system, the front and back
air—dielectric interfaces of the walls of the plexiglass cylin-
ders are not resolved spatially and therefore are not dif-
ferentiated in the reconstructed images.

In Fig. 5(b), where the test object is tilted 90° in
elevation, the two bright horizontal lines represent the
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(a)

(b)

Fig. 5. Reconstructed dielectric images using direct Fourier inversion
(left side) and filtered-back-projection algorithm (right side) of data
shown in Fig. 4(a) and (b).

images of the top and bottom plexiglass lids, where strong
specular reflections occur at certain values of . The
images of the vertical lines contributed from the specular
reflections from the walls of the two cylinders are dimmer
due to the weaker specular reflection from the walls.

In the case considered here, the filtered-back-projection
algorithm is seen to provide slightly better image quality
than the direct Fourier inversion, because the two-dimen-
sional inverse FFT requires both interpolation of the data
I'(p) measured originally in polar samples to Cartesian
samples and zero-padding in the unavailable region of
Fourier space. However, in terms of computation time, the
direct 2-D Fourier inversion is faster than the filtered-
back-projection algorithm. A detailed study of Fourier
inversion versus filtered back-projection methods as ap-
plied to dielectric imaging is found in [8].

IV. CoONCLUSIONS

Both theoretical and experimental studies of microwave
imaging of simple dielectric bodies under the first-order
Born approximation have been discussed in this paper.
The retrieved images shown are nearly free of the speckle
noise that plagues conventional coherent imaging systems
and particularly microwave imaging systems. Speckle noise
suppression is attributed to the enhanced resolution of the
wavelength diversity imaging technique.

The ability to image detail of the inner cylinder is
evidence of the potential of microwave techniques using
frequency and angular diversity in the imaging of internal
structure and hence in nondestructive evaluation.
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