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Frequency-Swept Microwave Imaging of
Dielectric Objects

TAH-HSIUNG CHU, MEMBER, lEEE AND NABIL H. FARHAT, FELLOW, IEEE

Abstract — In this paper, analytical and experimental studies of

frequency-swept microwave imaging of a nondispersive dielectric object

satisfying the Born approximation are presented. The retrieved images

shown from experimental data measured in the frequency range 6-17 GHz

are free of the speckle noise that plagues conventiomd coherent imaging

system. The results demonstrate that the microwave imaging system de-

scribed here has potential as a cost-effective tool in nondestructive evalua-

tion of dielectric objects.

I. INTRODUCTION

T HE ABILITY OF microwaves to propagate through

optically opaque dielectrics makes microwave ho-

lography useful for remote sensing and nondestructive

evaluation (NDE) of dielectric structures. This is accom-

plished by recording and analyzing the wave field scattered

by coherently illuminated dielectric structures. The use of

frequency diversity has been demonstrated to be an effec-

tive means for accessing the 3-D Fourier space of a scatter-

ing body and for the retrieval of tomographic or projective

images of the body [1]–[3] based on the projection-slice

theorem [4]. Automated and efficient data acquisition is

achieved by combining angular and spectral diversity.

In this paper, we make use of the fact that the normal-

ized scattered far field of a dielectric object, under the

first-order Born approximation, is related to the Fourier

transform of the derivative of the dielectric constant of the

test object [5]. Therefore, based upon the projection-slice

theorem, either direct Fourier inversion or a filtered-back-

projection algorithm can be applied to obtain a projective

or tomographic image of dielectric bodies from the accessed

spectral (or Fourier space) data. Experimental results of

projection imagery of two concentric plexiglass cylinders

viewed at different orientations demonstrate the utility of

the methods in imaging penetrable objects and visualizing

the internal structure in nondestructive evaluation.

II. THEORETICAL CONSIDERATIONS

In this section, we will present the principle of bistatic

microwave imaging of a nondispersive dielectric object

using the frequency diversity technique. The dielectric

object (see Fig. 1) possessing a relative dielectric constant
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c.( 7’) and situated in a lossless, homogeneous medium,

here assumed to be air (f, = 1), is illuminated by a plane

wave ~, ( k, 7) traveling in the direction of the unit vector

1~~,where

~l(k,i)=e~z”~ (1)

~, = kl~~being the wave vector of the incident wave, 7 and

7’ are position vectors, and exlp ( – jot) is implied. The

total field *(k, 7) at the observation or field point O(i)

satisfies the scalar Hehnholtz equation [5]

[v2+k2~p(~)]q’( k,7)=0 (2)

where W(k, ?) = V,(k, 7)+ Y,(k, 7), with Ts(k, ?) being

the scattered wave field, and

(3)

Equation (2) can then be written as

[v2+k2]*,(k,7) =-k’[t,(i)-l]T( k,7). (4)

Assuming that the dielectric clbject is weakly scattering,

i.e., c,(7’) = 1 + Ac,(i’) (and hence the first-order

approximation holds), (4) can then be expressed as

[v’+ k’]~~(k, i) = -k2A~,(7)T,(k, ?)

where

and – k2 Ac.( r ) is known as the scattering potential

the dielectric body.

Born

(5)

(6)

[5] of

The solution o:(5) for the scattered field for the case of

plane wave illumination and under the first-order Born

approximation can be shown, referring to Fig. 1, to be [5]

where du’ designates an element of volume of the object,

and

eM-~’l ~]kR
G(i–?’)=—— —

47rli --Z! = 47rR
(8)

is the Green’s function. The integration in (7) is taken over

all space, because Ac,( 7) is zero outside the dielectric

object.
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A frequency-swept microwave imaging system can be

implemented as shown in Fig. 2, where the transmitter and

coherent receiver are located in the x – y plane and the

dielectric object with scattering point (secondary source

point) position (p’, 6’, z’) is rotated in the O direction

about the z axis in order to be viewed at different azimuthal

aspect angles. The total scattered field is then

– k2 e’kR

—///
yAcr(p’, O’,z’) eJZ’”’’du’. (9)

= 4%’

Since we have assumed the observation point is in the far

field, the distance R from the scatterer to the observation

point 0(7) can be simplified as

R=l?–?’l =r–~,. ?’+r’2/2r. (lo)

The last term in (10) can be neglected

point is in the far field, i.e.,

~rt2
r>

wavelength “

if the observation

(11)

Therefore, (9) becomes

*~(k, r,s3)

(12)

Since 7’ as seen from Fig. 2 is a function of p’, (3’, and z’,

the integral in (12) is recognized as the 3-D Fourier

transform of the dielectric constant difference, where

~=i,-~i=k(~,-:k)

= 2k COS (a\2):P = P:P

= p[cos(~ – a/2);X +sin(d – a/2);Y]

is the position vector in the Fourier space r(~), the

normalized scattered wave field, defined as

Here Vref ( k, r) = ( jk/4mr) exp( jkr) is the scattered wave

field of a perfectly conducting cylinder which is used as a

reference object for range-phase term removal. The refer-

ence cylinder is positioned such that its axis is in the z

direction and its front surface coincides with the axis of

the turntable described in [2] and [31.
The quantity r( p, f?) is a two-dimensional slice in the

3-D Fourier space of the scattering dielectric object, which,
according to (12) and (13), is given by

r(p, tl) = jk///Acr(,8,,’, z’) e-J~”’p’dp’dO’dz’

= jk///Ac,(p(,8,,’, z’) dz’]e-’p”’’dpddddd’

(14)

because the vector ~ is located in the x-y plane. The

Fourier inversion of (14) gives

j( Ac, p’, 6“, Z’) dz’

‘~ jj~r(~fl)e’p”F>dPdo

= c~~~r(p, 8)eJPp’cOs~ff-d’-a/2JPdPd6’
1P

=cjjj~r(p,o)ejp$

“+-p’cos(o-e’-ald’pdpde

=cj[j[j~r,(p)~’’fpdp]
6’[&pcos(&&~)]d$]d0 (15)
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where r~( p ) represents a p-space data line collected at a

given 6 direction, C = cos (a/2)/27r 2 is a constant de-

pending on the bistatic angle, and ( is the projected

distance of position vector 7’ to the ~ vector at the x-y

plane. Recalling the spatial differentiation property of

Fourier transformation, (15) can be rewritten as

~/Aq(P’,f3’,z’) dz’= Cj[j[/r,(p)e’pgpdp]

“+-~’cos(d-d’-i)ldfldd’16)
The left side in this equation represents the discontinu-

ityy in the ~ direction of the dielectric constant profile

projected on the x-y plane. The absolute value of the left

side of (16) is defined as the dielectric image in this paper.

This is based on the observation that an image is formed

by reflection from interfaces or discontinuities. However,

(16) indicates that the projection on the x-y plane (z’

integral) of the dielectric constant profile can be recon-

structed from the accessed I’( p, 6 )/jp data, which is an

inverse scattering problem.

The inner integral in (16) is a one-dimensional Fourier

transform of a product of two terms, the first of which is a

line of 17(p, d) in a fixed /3 direction, and the second a

ramp filter or Ramachandran–Lakshmanarayanan filter

function [6]. This operation gives the projection data for

each view angle or the range profile of the object which is

the backscattered echo from the object when it is swept by

a propagative impulse plane wave. The second integral is a

back-protection operator for fixed angle 0. The outer

integral is a 8 summation of the back-projection data. This

expression in (16) describes a filtered-back-projection al-

gorithm [4] which is well known in CAT (computer-aided

tomography). Note, in practice, 110(p) is only available

over a certain spectral window [ pl to p2 ]. As a result, the

reconstructed image is diffraction limited and is then an

approximation of the true dielectric constant difference.

The Fourier space data 17(p, O ) can also be interpolated

into a Cartesian format 17(px, py ). Therefore a two-dimen-

sional direct Fourier inversion of r( px, py) would recon-

struct the same dielectric image based on the projection-

slice theorem.

Before proceeding to describe the experimental aspect of

this work, a few remarks are made here to emphasize the

distinction between the technique of X-ray tomography

and this frequency-swept microwave tomographic imaging

system. First, the data acquisition algorithm and the mea-

surement instruments are different. X-ray tomography is

an incoherent system which records the spatial-domain

projections of the X-ray absorptivity of the test object on

the viewing aperture. The described microwave imaging
system is a coherent system that accesses the Fourier space

of a scatterer by measuring the frequency response of the

body as a function of aspect angle. The spatial-domain

projections calculated from Fourier inversion give the de-

rivative of the projected dielectric constant profile of the

test object. A second distinction is that in X-ray tomogra-

phy the line integral (or projection) is taken along the

direction in which the X-ray radiation is beamed. In a

microwave imaging system employing plane wave il-

lumination, however, the integration is normal to the j-line

direction determined by the T/R. positions. Therefore, the

reconstructed image is derived from range information

measured by each receiver, and the cross-range informa-

tion is then obtained by processing many range returns

observed in different scattering directions.

111. EXPERIMENTAL RESULTS

In the following experiment, results of imaging a dielec-

tric object consisting of two concentric plexiglass cylinders

with top and bottom plexiglass lids situated in an anechoic

chamber environment as shown in Fig. 3 are presented.

The radii of the inner and outer cylinders are 4.7 cm and

15.0 cm, respectively. The lengths of the cylinders are 24.0

cm and the plexiglass walls are 0,,3 cm thick. An HP841OB

automated network analyzer is augmented to make multi-

aspect scattered field measurements over a wide frequency

band covering the 6-17 GHz range as described elsewhere

[3]. The object is located about 8 m from the T/R anten-

nas to satisfy the far-field criterion given in (11). For

example if r’= 15 cm and ~ = 1’7 GHz, the right side of

(11) becomes 4 m, which is less than the object range. A

long metallic cylinder is used as the calibration object for

system response characterization and range-phase term

removal as described in [3].

A 2-D slice of the Fourier space data is formed by

rotating the test object in azimuthal O direction and mea-

suring I’o( p ) for each rotation angle 0. In the measure-

ment, two slices of the Fourier space data r(p), shown in

Fig. 4(a) and (b), are recorded for two elevation angles of

the cylinders 0° and 90°, respectively. The data recording

format used consisted of 256 radial lines covering an

angular aperture of 360° with each line containing 64

frequency points. For the bistatic angle a = 20° and the

frequency range 6–17 GHz used in the recording geome-

try, the vector jTJ= k( Z:,– ;~) = 2k cos (a/2) Z; extends from

pl = 2.475 rad/cm to p2 = 7.013 rad/cm. The resulting

range resolution is 8R = C/2A f = 27r/( pz – pl) = 1.38

cm, where Af is the spectral range utilized.

Projection images of the plexiglass cylinders can then be

reconstructed by applying either direct 2-D Fourier inver-

sion or the filtered-back-projection algorithm to the

accessed Fourier slice data. The 2-D inverse FFT of the

r(~) data requires its conversion first from the polar

format in which it is originally acquired to a Cartesian

format. This was achieved by means of a weighted average

of the four nearest neighboring data points algorithm [7].

The interpolated Cartesian samples contain 128 x 128 sam-
ples over the region px = ( – 7.01 -- 7.01) rad/cm and py =

(– 7.01- 7.01) rad/cm, with the unavailable samples set

to zero. A’ 2-D inverse FFT is then employed and the

reconstructed images shown on the left side of Fig. 5 were

obtained. The reconstructed images obtained by the

filtered-back-projection operation are shown on the right
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Fig, 3. Measurement arrangement in an anechoic chamber environ-
ment,
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Real part (b) Imaginary part

Fig, 4. Real part (left side) and imaginary part (right side) of accessed
Fourier space data r(~) of test object oriented at elevation angles (a)
0° and (b) 90°.

side of Fig. 5. A nearest four neighbors interpolation

algorithm is used to transform the final back-projected

image from a polar format to a Cartesian format for

comparison.

The retrieved image for each elevation angle represents
the projection of the scattering centers, such as walls and

edges of the two cylinders, on the x – y plane. The results

shown in Fig. 5 bear close resemblance to the top view of

the two cylinders for the two elevation angles 0° and 90°.

Since the thickness of the plexiglass cylinder is less than

the range resolution of the system, the front and back

air–dielectric interfaces of the walls of the plexiglass cylin-

ders are not resolved spatially and therefore are not dif-

ferentiated in the reconstructed images.

In Fig. 5(b), where the test object is tilted 90° in

elevation, the two bright horizontal lines represent the

(a)

(b)

Fig. 5. Reconstructed dielectric images using direct Fourier inversion
(left side) and filtered-back-projection algorithm (right side) of data

shown in Fig. 4(a) and (b).

images of the top and bottom plexiglass lids, where strong

specular reflections occur at certain values of 0. The

images of the vertical lines contributed from the specular

reflections from the walls of the two cylinders are dimmer

due to the weaker specular reflection from the walls.

In the case considered here, the filtered-back-projection

algorithm is seen to provide slightly better image quality

than the direct Fourier inversion, because the two-dimen-

sional inverse FFT requires both interpolation of the data

17(p) measured originally in polar samples to Cartesian

samples and zero-padding in the unavailable region of

Fourier space. However, in terms of computation time, the

direct 2-D Fourier inversion is faster than the filtered-

back-projection algorithm. A detailed study of Fourier

inversion versus filtered back-projection methods as ap-

plied to dielectric imaging is found in [8].

IV. CONCLUSIONS

Both theoretical and experimental studies of microwave

imaging of simple dielectric bodies under the first-order

Born approximation have been discussed in this paper.

The retrieved images shown are nearly free of the speckle

noise that plagues conventional coherent imaging systems

and particularly microwave imaging systems. Speckle noise

suppression is attributed to the enhanced resolution of the

wavelength diversity imaging technique.

The ability to image detail of the inner cylinder is

evidence of the potential of microwave techniques using

frequency and angular diversity in the imaging of internal

structure and hence in nondestructive evaluation.
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